

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH12)

Paper 01: Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P70965A
Publications Code WCH12_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Question number	Answer	Mark
1	The only correct answer is A $(2Al(s) + 1\frac{1}{2}O_2(g) \rightarrow Al_2O_3(s))$	(1)
	B is incorrect because oxygen exists as O ₂ in its standard state	
	C is incorrect because standard enthalpy change of formation is for the formation of 1 mol of a compound	
	D is incorrect because standard enthalpy change of formation is for the formation of 1 mol of a compound and oxygen exists as O_2 in its standard state	

Question number	Ans	swer	Mark
2	The	e only correct answer is A (gains electrons and decreases in oxidation number)	(1)
	В	is incorrect because oxidising agents are reduced during a reaction so there is a decrease in oxidation number	
	C	is incorrect because oxidising agents are reduced during a reaction so they gain electrons	
	D	is incorrect because oxidising agents are reduced during a reaction so they gain electrons and there is a decrease in oxidation number	

Question	An	swer	Mark
number			
3	Th	e only correct answer is B (CH ₃ CH ₂ CH ₂ CH ₂ OH)	(1)
	\boldsymbol{A}	is incorrect because branching in the carbon chain reduces the boiling temperature of isomeric alcohols	
	C	is incorrect because alkanes do not have hydrogen bonding and have lower boiling temperatures than alcohols with a similar number of electrons	
	D	is incorrect because alkanes do not have hydrogen bonding and have lower boiling temperatures than alcohols with a similar number of electrons	

Question number	Answer	Mark
4	The only correct answer is B (potassium chlorate(III))	(1)
	A is incorrect because the oxidation number of chlorine in $KClO_2$ is $+3$	
	C is incorrect because the oxidation number of chlorine in $KClO_2$ is $+3$	
	D is incorrect because the oxidation number of chlorine in $KClO_2$ is $+3$	

Question number	Answer	Mark
5(a)	The only correct answer is D (Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$)	(1)
	<i>A</i> is incorrect because CaO is not a product of the reaction	
	B is incorrect because CaO2 is an incorrect formula for calcium oxide	
	C is incorrect because CaOH is an incorrect formula for calcium hydroxide	

Question number	Answer	Mark
5 (b)	The only correct answer is A (calcium oxidised, hydrogen reduced)	(1)
	B is incorrect because oxygen is not reduced	
	C is incorrect because hydrogen is not oxidised and calcium is not reduced	
	D is incorrect because hydrogen is not oxidised and oxygen is not reduced	

Question number	Answer	Mark
6	The only correct answer is A $(BaCO_3(s) + 2H^+(aq) \rightarrow Ba^{2+}(aq) + CO_2(g) + H_2O(l))$	(1)
	B is incorrect because Ba ₂ CO ₃ is not the formula for barium carbonate	
	C is incorrect because solid barium carbonate should not be split up into ions	
	$m{D}$ is incorrect because hydrochloric acid is in solution and should be split up into ions and Cl^- are spectator ions	

Question	Answer	Mark
number		
7	The only correct answer is D (Reagent: NaOH(aq), Test for gas: damp red litmus paper turns blue)	(1)
	A is incorrect because hydrochloric acid does not react with ammonium ions	
	B is incorrect because hydrochloric acid does not react with ammonium ions	
	C is incorrect because ammonia is produced and it is alkaline so turns damp red litmus paper blue	

Question	Answer	Mark
number		
8	The only correct answer is D (violet)	(1)
	$m{A}$ is incorrect because iodine is produced in the reaction and it is brown in aqueous solution but violet in a non-polar organic solvent	
	B is incorrect because chlorine gas is green	
	C is incorrect because bromine is orange in a non-polar organic solvent	

Question number	Answer	Mark
9(a)	The only correct answer is C (yellow to orange)	(1)
	A is incorrect because methyl orange is yellow in alkaline solution	
	B is incorrect because methyl orange is yellow in alkaline solution and turns red when excess acid has been added	
	D is incorrect because methyl orange turns red when excess acid is added	

Question	Answer	Mark
number		
9(b)	The only correct answer is C (22.80, 22.35, 22.40 (cm ³))	(1)
	A is incorrect because the first titre should be higher than the other two titres	
	B is incorrect because the second and third titres should be concordant and lower than the first titre	
	D is incorrect because the second and third titres should be lower than the first titre	

Question	Answer	Mark
number		
9 (c)	The only correct answer is B (0.0668 (mol dm ⁻³))	(1)
	A is incorrect because the volumes have been used the wrong way round	
	C is incorrect because the mole ratio of 2: 1 has not been used	
	D is incorrect because the mole ratio has been used as 2 H ₂ SO ₄ : 1 NaOH	

Question number	Answer	Mark
10(a)	The only correct answer is D (decreasing the activation energy of the reaction)	
	A is incorrect because only an increase in temperature causes the average kinetic energy of the molecules to increase	
	B is incorrect because only a decrease in temperature causes the average kinetic energy of the molecules to decrease	
	C is incorrect because if the activation energy increased, the rate of decomposition would decrease	

Question	Answer	Mark
number		
10(b)	The only correct answer is D (0.833 (mol dm ⁻³))	(1)
	A is incorrect because the volume of oxygen has not been converted into moles	
	B is incorrect because the 2:1 mole ratio has been used the wrong way around	
	C is incorrect because the 2: 1 mole ratio has not been used	

Question	Answer	Mark
number		(1)
11	The only correct answer is A (change in equilibrium position: left, enthalpy change: endothermic)	(1)
	B is incorrect because an exothermic reaction would decrease the concentration of iodine	
	C is incorrect because the equilibrium position would shift to the left	
	D is incorrect because the equilibrium position would shift to the left	

Question number	Answer	Mark
12	The only correct answer is C (nucleophile)	
	A is incorrect because electrophiles attack atoms with a slight negative charge	
	B is incorrect because free radicals attack neutral atoms	
	D is incorrect because oxidising agents remove electrons from a species	

Question	Answer	Mark
number		
13	The only correct answer is B (P and Q only)	(1)
	$oldsymbol{A}$ is incorrect because $oldsymbol{Q}$ is also primary alcohol and will be oxidised to a carboxylic acid	
	C is incorrect because R is a secondary alcohol and will be oxidised to a ketone	
	$m{D}$ is incorrect because $m{R}$ is a secondary alcohol and will be oxidised to a ketone and $m{S}$ is a tertiary alcohol so is not easily oxidised	

Question	Answer	Mark
number		
14(a)	The only correct answer is C (concentrated phosphoric(V) acid)	
	A is incorrect because acidified potassium manganate(VII) converts an alkene into a diol	
	B is incorrect because aqueous bromine reacts with an alkene to form a bromoalcohol	
	D is incorrect because phosphorus(V) chloride reacts with an alcohol to form a chloroalkane	

Question number	Answer	Mark
14(b)	The only correct answer is C $(C_6H_{11}OH + [O] \rightarrow C_6H_{10}O + H_2O)$	(1)
	A is incorrect because [O] is needed from the oxidising agent and hydrogen gas would not be produced	
	B is incorrect because [O] is needed from the oxidising agent and hydrogen atoms would not be produced	
	D is incorrect because the oxidising agent is not oxygen gas	

Question	Answer	Mark
number		
14 (c)	The only correct answer is C (3750-3200, 1669-1645)	
	A is incorrect because there is a C-H bond in both compounds	
	$m{B}$ is incorrect because there is a C-H bond in both compounds and there is no C=O in cyclohexene	
	D is incorrect because there is no $C=O$ in cyclohexene	

(Total for Section A = 20 marks)

Question Number	Answer	Additional Guidance	Mark
15(a)	An explanation that makes reference to the following points:	Penalise omission of 'ion' or just magnesium / Mg / calcium / Ca without charge once only in M1 and M2 Allow reverse argument for magnesium ions in M1 and M2	(3)
	 Size (and charge) calcium ion / Ca²⁺ has a larger (ionic) radius than a magnesium ion (but the same charge) or magnesium ion / Mg²⁺ has a smaller (ionic) radius / is smaller than a calcium ion (but the same charge) (1) Polarising power so calcium ion / Ca²⁺ causes less polarisation / distortion or magnesium ion / Mg²⁺ causes more polarisation / 	Allow size for radius or just 'bigger / smaller' Allow ionic radius / size of cation increases down the group / decreases up the group Allow calcium carbonate has a larger cation Allow calcium ions have a lower charge density Allow calcium ions have more shells of electrons	
		Ignore effective nuclear charge / mass : charge ratio Ignore atomic radius Ignore omission of same charge	
		Do not award M1 if mention of different / incorrect charges on magnesium and calcium ions	
		Allow polarising power of cation decreases down the group	
		Allow Ca ²⁺ causes less weakening of bonds for polarisation	
		Do not award just 'the carbonate ion is less polarisable' for M2, although this can score M3	
	• What is polarised of the carbonate ion / CO ₃ ²⁻ / anion / negative ion / C-O bonds / C=O bonds / CO bonds (1)	Allow electron cloud for ion Do not award reference to nitrate / N-O bonds Do not award reference to breaking unspecified bonds / (ionic) bond between cation and anion Do not award references to intermolecular forces	

Question Number	Answer		Additional Guidance	Mark
15(b)(i)			Example of calculation:	(3)
	calculation of mol of CO ₂	(1)	$mol CO2 = 100 / 24000 = 0.0041667 / 4.1667 \times 10^{-3} (mol)$	
	calculation of mol of HCl	(1)	mol HCl = 2 x 0.0041667 = 0.0083333 / 8.3333 x 10^{-3} (mol) TE on M1	
	calculation of volume of HCl and corresponding volume unit	(1)	vol HCl = 0.0083333 x 1000 = (16.667) 0.500 = 16.6 cm ³ / 0.0166 dm ³ Do not award incorrect units e.g. cm ⁻³ / dm ⁻³ Allow 16.67 / 16.7 cm ³ as the theoretical volume of CO ₂ is 100.02 / 100.2 cm ³ Do not award 17 cm ³ as the theoretical volume of CO ₂ is 102 cm ³ so would exceed the measurable volume of the syringe Allow any number between 16 and 16.7 cm ³ / 0.016 and 0.0167 dm ³ inclusive TE on M2 Ignore SF except 1 SF Correct answer with units and no working scores (3) Accept fractions / correct working not evaluated for M1 and M2 e.g. $1/240$, $1/120$	

Question Number	Answer	Additional Guidance	Mark
15(b)(ii)		Volume of CO ₂ /cm ³ Volume of CO ₂ /cm ³ Time/s	(3)
	• tangent drawn at t = 0	Tangent must touch the curve for at least 24 s (2 small squares horizontally) and extend to at least 20 cm ³	
	• gradient	Gradient = $\frac{100}{360}$ = 0.27778 (expected value 0.25 to 0.33 for tangent 360 at t = 0) TE on tangent drawn at any time value If no tangent drawn, allow a selected point and y/x value e.g. $32/120$ = 0.27	
	• units	Stand alone mark cm ³ s ⁻¹ or cm ³ / s or cm ³ /s Allow cm ³ s ⁻	

Question Number	Answer	Additional Guidance	Mark
15(b)(iii)	An answer that makes reference to the following point:		(1)
	• initial rate halves and final volume of CO ₂ halves / is 45 (cm ³)	Allow initial rate decreases and final volume of CO ₂ decreases Do not award any specific decrease (e.g. decrease by a factor of 4) except for half	

(Total for Question 15 = 10 marks)

Question Number	Answer	Additional Guidance	Mark
16(a)	An explanation that makes reference to the following points:		(2)
	atomic radius increases or distance between the nucleus and outer electrons increases or there are more shells / energy levels of inner electrons between the nucleus and the outer shell electrons (1)	Allow size of atoms increases / gets bigger Allow just 'more shells of electrons' Allow effective nuclear charge decreases Do not award nuclear charge decreases Do not award reference to ions / ionic radius for M1 only	
	• so there is less attraction (by the nucleus with a higher charge) for the bonding electrons / shared pair of electrons (1)	Allow greater shielding between the nucleus and the bonding electrons / shared pair of electrons Note – bonding / shared pair can be mentioned anywhere in the answer	

Question Number	Answer	Additional Guidance	Mark
~	 An answer that makes reference to the following points: three oxidation numbers of I: IO₃⁻ = (+)5 I⁻ = -1 I₂ = 0 (2) two different species / ions / compounds (of iodine) are oxidised and reduced (to form the same species) or there is not one species / ion / compound that is being oxidised and reduced or 	Allow oxidation numbers written near species in the equation Ignore oxidation numbers of H and O Do not award O.N. I ₂ is neutral / I ⁻ is -5 Allow I ₂ / iodine is oxidised and reduced in the reverse reaction Allow (iodine in) IO ₃ ⁻ is only being reduced or (iodine in) I ⁻ is only being oxidised Ignore just 'the reaction is only oxidation / reduction'	(2)
	2 different oxidation states are not produced from one oxidation state (of iodine) or only one species / oxidation state of iodine is formed (1)	Ignore just 'comproportionation' Ignore just 'I / iodine is not simultaneously oxidised and reduced'	

Question Number	Answer	Additional Guidance		Mark
16(c)		Example of table:		(1)
		Hydrogen halide	Compound produced with	
			the lowest oxidation number	
	• sulfur dioxide / sulfur (IV) oxide / SO ₂ produced from		of sulfur	
	HBr	(HBr)	sulfur dioxide / SO ₂	
	and	(HI)	hydrogen sulfide / H ₂ S	
	hydrogen sulfide / H ₂ S produced from HI	Ignore Br ₂ and I ₂		
		Note - If name and	formula are given, both must be	
		correct		

Question Number	Answer	Additional Guidance	Mark
16(d)	An explanation that makes reference to the following points:	Allow van der Waals' forces / dispersion forces / attractions between instantaneous dipoles and induced dipoles for London forces or a description of London forces	(4)
	• all hydrogen halides have London forces (and dipole-dipole forces between molecules) (1)	Ignore London forces omitted from HF Do not award this mark if ions mentioned in answer Do not award this mark if breaking H-Cl, H-Br or H-I bonds	
	 the strength of the London forces increases as the number of electrons increases (so the boiling temperature increases from HCl to HI) or 	Ignore the strength of the London forces increases as the size of the molecule $/M_{\rm r}$ increases	
	the strength of the London forces increases as the polarisability of the molecules increases from HCl to HI (1)		
	• (only) HF has hydrogen bonding (between molecules) (1)	Do not award M3 if hydrogen bonding in any other hydrogen halide	
	 hydrogen bonding is (much) stronger than London forces / dipole-dipole forces (so HF	Allow more heat energy is needed to overcome hydrogen bonding than London forces Allow hydrogen bonding is the strongest intermolecular force / bond	

Question Number	Answer		Additional Guidance	Mark
16(e)			Example of calculation: Method 1	(3)
	calculation of mol of AgCl	(1)	mol AgCl = $\underline{0.226}$ = 0.0015760 / 1.5760 x 10 ⁻³ 143.4	
	• calculation of mass of Cl ⁻	(1)	mass $Cl^- = 1.5760 \times 10^{-3} \times 35.5 = 0.055948 (g)$	
	• calculation of percentage of Cl ⁻	(1)	% $C1^{-} = \frac{0.055948}{0.098} \times 100 = 57.09 / 57.1 / 57 (\%)$	
	OR			
	calculation of % by mass of Cl in AgCl	(1)	Method 2 % by mass of Cl in AgCl = $\frac{35.5}{143.4}$ x 100 = 24.756 (%)	
	calculation of mass of Cl in residue	(1)	mass of $Cl = 24.756 \times 0.226 = 0.055948 (g)$	
	• calculation of percentage of Cl ⁻	(1)	% by mass of Cl ⁻ in residue = $\frac{0.055948}{0.098}$ x 100 = 57.09 / 57.1 / 57 (%)	
			Correct answer with no working scores (3)	
			Allow TE at each stage	
			Allow alternative methods	
			Ignore SF except 1 SF	
			Accept fractions / correct working not evaluated for M1 and M2	

(Total for Question 16 = 12 marks)

Question Number	Answer	Additional Guidance	Mark
17(a)	both classifications correct	Example of table: Halogenoalkane Classification secondary primary	(1)
		Allow 2° for secondary Allow 1° for primary Ignore halogenoalkane	

Question Number	Answer Additional Guidance		Mark
17(b)	An explanation that makes reference to the following points:		(3)
	• 2-chloro-2-methylpropane should react faster than 1-iodobutane because it is tertiary (1)	Stand alone mark Allow tertiary / branched chain / more branched halogenoalkanes have a higher rate of hydrolysis than primary halogenoalkanes Do not award secondary for 2-chlor-2-methylpropane Do not award tertiary carbocation	
	1-iodobutane should react faster than 2-chloro-2-methylpropane because the C–I bond enthalpy is lower than C–Cl	Stand alone mark Allow just 'the C–I bond is weaker / has a lower bond enthalpy than C–Cl'	
		Ignore just 'bonds in 1-iodobutane are weaker' Do not award H–I / H–Cl bonds	
	• it is not possible to predict the relative effects of these two opposing factors / structure and bond enthalpies (1)	Conditional on two opposing factors If M1 and M2 scored, allow 'so it is not possible to predict the relative rate of hydrolysis'	

Question Number	Answer	Additional Guidance	Mark
17(c)(i)			(1)
	ammonia (gas) would escape (from the condenser when	Ignore just 'ammonia will evaporate'	
	heated under reflux)	Ignore concentrated alcoholic	
	to prevent ammonia (gas) escaping (from the condenser	Ignore references to safety	
	when heated under reflux)	Ignore just 'gas / reactant escapes'	
		Do not award any other substance escaping	

Question Number	Answer		Additional Guidance	Mark
17(c)(ii)	• lone pair on N of NH ₃		Penalise missing lone pair on N once only Penalise negative charge on NH ₃ once only Penalise half-arrow heads once only	(4)
	curly arrow from lone pair on N to, or towards C	(1)		
	• dipole on C-Br and			
	curly arrow from C-Br bond to, or just beyond, Br	(1)		
	lone pair on N of NH ₃ and and and analysis on N to an towards H	(1)		
	curly arrow from lone pair on N to, or towards H	(1)		
	curly arrow from N-H bond to, or towards N	(1)	Do not award any charge / dipole on H Ignore any changes to final products	
Example of	mechanism:			
	H_C3H ₇ Brs-	H_N H F	с _э н ₇ н + Br	
		H N-	С ₃ Н ₇ + NH ₄ ⁺	

Question Number	Answer	Additional Guidance	
17(d)	• calculation of amounts of KBr and H ₂ SO ₄ (1	Example of calculation: amount KBr = $\frac{14.90}{119}$ = 0.12521 (mol) amount H ₂ SO ₄ = $\frac{16.35}{98.1}$ = 0.16667 (mol) 98.1 Allow use of 98 for $M_{\rm f}$ of H ₂ SO ₄ giving 0.16684 (s	mol)
	calculation of amount of C ₂ H ₅ OH and statement or implication that this is the limiting quantity	amount $C_2H_5OH = \underline{4.65} = 0.10109 / 0.10 / 0.1$ (mode) and any indication that the limiting reagent is C_2H_5OH use of mol of ethanol in M3	
	• calculation of maximum mass of C ₂ H ₅ Br formed ((maximum amount C_2H_5Br formed = 0.10109 (more maximum mass C_2H_5Br formed = 0.10109 x 108.9 = 11.008 / 11.01 / 11.0 / 11 (g) Allow use of 109 for M_r of C_2H_5Br giving 11.018 Ignore SF except 1 SF, but allow 0.1 for mol C_2H_5	(g)

Question Number		Acceptable Answ	ers	Additional Guidance	Mark
17(e)*	logically structured reasoning. Marks are awarded is structured and sharm the following table indicative content. Number of indicative marking points seen in answer 6 5-4 3-2 1 0	I answer with linkages I for indicative content nows lines of reasoning e shows how the mark Number of marks awarded for indicative marking points 4 3 2 1 0	and for how the answer	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully	2
sustained lines of reasoning demonstrated throughout.	
Answer is partially structured with	1
some linkages and lines of reasoning.	
Answer has no linkages between points and is unstructured.	0

Comment:

Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.

General points to note

If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).

•		4 •		
In	dics	ıtive	COD	tent

• IP1 –Similarity

Both reactions involve hydroxide ions / OH⁻

• IP2 – Type of reaction

Reaction with aqueous solution is substitution **and**

reaction with ethanolic solution is elimination

• IP3 – Type of reagent

 $(OH^-\,is\,\,a)$ nucleophile in aqueous solution \boldsymbol{and}

a base in ethanolic solution

• IP4 – Products

In aqueous solution propan-2-ol / an alcohol forms \boldsymbol{and}

in ethanolic solution propene / an alkene forms

• IP5 – Equation in aqueous solution

 $CH_3CHBrCH_3 + OH^- \rightarrow CH_3CHOHCH_3 + Br^-$

• IP6 – Equation in ethanolic solution

 $CH_3CHBrCH_3 + OH^- \rightarrow CH_3CH=CH_2 + H_2O + Br^-$

Penalise use of incorrect halogenoalkane once only

Allow OH⁻ shown with both reactions anywhere in the answer e.g. in the equations

Allow both reactions need heat (under reflux)

Ignore displacement for substitution

Ignore dehydration for elimination

Do not award dehydrogenation for elimination

If IP2 and IP3 not awarded, allow 1 IP for just 'nucleophilic substitution' or 'elimination by a base'

This can be scored from the equations

In IP5 and IP6, allow displayed formulae / any combination of displayed and structural formulae / skeletal formula $Allow\ KOH\ /\ KBr\ /\ K^+ + OH^-\ /\ K^+ + Br^-$ The equations must be balanced Ignore state symbols even if incorrect Ignore mechanisms even if incorrect

(Total for Question 17 = 18 marks)

Question Number	Answer	Additional Guidance	Mark
18(a)(i)			(1)
		Allow 'a specified / stated temperature'	
	• (temperature) 298 K / 25°C and	Ignore just 'room temperature'	
	(pressure) 1 atm / 100 kPa / 101 kPa / 1 x 10 ⁵ Pa / 1.01 x 10 ⁵ Pa	Do not award 298°K	
		Do not award incorrect pressure units e.g. 101 Pa	

Question Number	Answer		Additional Guidance	Mark
18(a)(ii)			Example of equation:	(2)
	• molecular formula for 2,2,4-trimethylpentane	(1)	$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$	
	 rest of equation correct conditional on use of C₈H₁₈ 		Accept 25/2 for 121/2	
	or use of structural / displayed / skeletal formula for 2,2,4-trimethylpentane	(1)	Allow multiples e.g. $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$	
			Ignore state symbols even if incorrect	

Question Number	Answer			Additional Guidance	
18(a)(iii)			Example of diagra	Example of diagram;	
			1	reactants	
			enthalpy	$\Delta_{c}H$ products \bullet	
				progress of reaction	
	y axis labelled enthalpy and		•	/ enthalpy level as label for y axis / enthalpy change / energy change as label for y	
	products line drawn at a lower level than reactants line	(1)		rmulae of reactants and products but both must be - O ₂ for reactants and CO ₂ + H ₂ O for products	
				ncorrect balancing numbers if formulae given sing label on x axis energy hump(s)	
	• downwards arrow labelled with $\Delta_c H$	(1)	M2 Conditional o	on reactants higher than products	
		. ,	Allow label as ΔF change of combus	H / -5461 / other label that indicates enthalpy stion / reaction	
			Do not award dou arrow labelled -Δ	able headed arrow / or just a line with no arrow / AH	

Question Number	Answer		Additional Guidance	Mark
18(a)(iv)	calculation of energy given out by 1 g	(1)	Example of calculation: Method 1 enthalpy change $/ g = \underline{5461} = 47.904$ (kJ) 114	(3)
	• calculation of energy given out by 1 cm ³	(1)	enthalpy change / $cm^3 = 47.904 \times 0.692 = 33.149 \text{ (kJ)}$ TE on M1	
	• calculation of energy given out by 1 dm ³	(1)	enthalpy change / $dm^3 = 33.149 \times 1000$ = $33.149 \times 10^3 \text{ (kJ)}$ TE on M2	
			Method 2 mass of 2,2,4-trimethylpentane in 1 dm ³ $= 0.692 \times 1000 = 692 \text{ (g) (1)}$ mol in 1 dm ³ = $\frac{692}{114} = 6.0702 \text{ (mol) (1)}$ TE on M1 enthalpy change / dm ³ = 6.0702×5461 $= 33149 / 33.149 \times 10^3 \text{ (kJ) (1)}$	
			TE on M2 Allow alternative methods Correct answer with some working scores (3) Ignore SF except 1 SF Ignore minus sign Ignore units, even if incorrect	

Question Number	Answer		Additional Guidance	Mark
18(b)(i)	calculation of heat evolved	(1)	Example of calculation: heat evolved = $100.0 \times 4.18 \times 13.2$ = $5517.6 \text{ (J)} / 5.5176 \text{ kJ}$ Do not award $100.305 \times 4.18 \times 13.2 = 5534.4 \text{ (J)}$	(4)
	calculation of moles of ethanol used	(1)	amount of ethanol = $\frac{0.305}{46}$ = 0.0066304 / 6.6304 x 10 ⁻³ (mol)	
	working for heat evolved per mole	(1)	heat evolved per mole = 5.5176 (= 832.17) TE on M1 and M2	
	 value of Δ_cH to 2 / 3 SF and negative sign and units 	(1)	$\Delta_c H = -830 / -832 \text{ kJ mol}^{-1}$ Allow units kJ/mol or <u>kJ</u> or kJ mol ⁻ mol Ignore letter case in units e.g. k or K, J or j Accept $-830000 / -832000 \text{ J mol}^{-1}$ TE on M3 Ignore SF except 1 SF in M1, M2 and M3 Correct answer with some working to 2/3 SF with sign and units scores (4)	

Question Number	Answer	Additional Guidance	Mark
18(b)(ii)	calculation of percentage error	Example of calculation: $(2 \times 0.05 \times 100) = 0.75758 (\%)$ 13.2	(1)
		Allow 0.7576 / 0.758 / 0.76 / 0.8 Correct answer with no working scores (1) Ignore signs Do not award 0.75 / 0.757 / 0.80	

Question Number	Answer		Additional Guidance	Mark
18(b)(iii)	An answer that makes reference to any two of the following points:			(2)
	• heat loss (to the surroundings) (1	.)		
	• incomplete combustion (of ethanol) (1))	Allow insufficient oxygen for combustion Ignore not all of the ethanol was burned	
	• some ethanol evaporates (1))	Ignore product(s) / water evaporates	
	• calculation does not take into account the heat capacity of the beaker (1)		Allow some heat is used to heat up the beaker Ignore thermometer Ignore ethanol was impure Ignore water was not stirred Ignore no lid on beaker	

Question Number	Answer		Additional Guidance	Mark
18(c)	 calculation of bond energies of O-H and C-H calculation of bond energy of C-O 	(1) (1)	Example of calculation: Method 1 bond energy O-H = $928/2 = (+)464$ (kJ mol ⁻¹) and bond energy C-H = $1740/4 = (+)435$ (kJ mol ⁻¹) bond energy C-O = $2105 - (3 \times 435) - 464$ = $(+)336$ (kJ mol ⁻¹) TE on M1	(3)
	• calculation of bond energy of C-C	(1)	bond energy C-C = 3322 - (5 x 435) - 464 -336 = (+)347 (kJ mol ⁻¹) Method 2 3322 - 2105 = 1217 = C-C + 2 x C-H (1) bond energy 2 x C-H = 1740/2 = (+)870 (kJ mol ⁻¹) (1) C-C = 1217 - 870 = (+)347 (kJ mol ⁻¹) (1) M3 TE on M1 and M2 in both methods Correct answer with some working scores (3)	

Question Number	Answer	Additional Guidance	Mark
18(d)	An answer that makes reference to the following points: • there are fewer (gas) molecules on the right hand side / more (gas) molecules on the left hand side (1)	Ignore effect of temperature Ignore effect on rate of reaction Allow moles for molecules Allow 2 (gas) molecules on the left and 1 (gas) molecule on the right Allow higher pressure favours the side with fewer (gas) molecules	(2)
	• so the equilibrium position will shift to the right / product side and the equilibrium yield of ethanol will increase (1)	Allow forward reaction is favoured and the equilibrium yield of ethanol will increase	

(Total for Question 18 = 20 marks)

Total for Section C = 20 marks Total for paper = 80 marks